Interpolation error estimates for harmonic coordinates on polytopes
نویسندگان
چکیده
منابع مشابه
Interpolation Error Estimates for Harmonic Coordinates on Polytopes
Interpolation error estimates in terms of geometric quality measures are established for harmonic coordinates on polytopes in two and three dimensions. First we derive interpolation error estimates over convex polygons that depend on the geometric quality of the triangles in the constrained Delaunay triangulation of the polygon. This characterization is sharp in the sense that families of polyg...
متن کاملInterpolation error estimates for mean value coordinates over convex polygons
In a similar fashion to estimates shown for Harmonic, Wachspress, and Sibson coordinates in [Gillette et al., AiCM, to appear], we prove interpolation error estimates for the mean value coordinates on convex polygons suitable for standard finite element analysis. Our analysis is based on providing a uniform bound on the gradient of the mean value functions for all convex polygons of diameter on...
متن کاملSharp Error Estimates for Interpolatory Approximation on Convex Polytopes
Let P be a convex polytope in the d-dimensional Euclidean space. We consider an interpolation of a function f at the vertices of P and compare it with the interpolation of f and its derivative at a fixed point y ∈ P. The two methods may be seen as multivariate analogues of an interpolation by secants and tangents, respectively. For twice continuously differentiable functions, we establish sharp...
متن کاملError estimates for generalized barycentric interpolation
We prove the optimal convergence estimate for first order interpolants used in finite element methods based on three major approaches for generalizing barycentric interpolation functions to convex planar polygonal domains. The Wachspress approach explicitly constructs rational functions, the Sibson approach uses Voronoi diagrams on the vertices of the polygon to define the functions, and the Ha...
متن کاملError estimates for some quasi-interpolation operators
‖u− Ihu‖L2(T ) ≤cThT ‖∇ku‖L2(ω̃T ), ‖u− Ihu‖L2(E) ≤cEh E ‖∇ku‖L2(ω̃E). Here, k ∈ {1, 2}, Ih is some quasi-interpolation operator, T and E are a simplex and a face thereof, hT and hE measure the size of T and E, and ω̃T and ω̃E are neighbourhoods of T and E which should be as small as possible. Note that the interpolate Ihu never needs to be computed explicitely. Moreover, for problems in two and th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ESAIM: Mathematical Modelling and Numerical Analysis
سال: 2016
ISSN: 0764-583X,1290-3841
DOI: 10.1051/m2an/2015096